Veliki podaci: Prognoziranje nezaposlenosti u EU-28 pomoću Google pretraživanja
Naručitelj: ETLA - Institut za gospodarska istraživanja
Trajanje projekta: srpanj 2015. – siječanj 2016.
Voditeljica projekta: dr. sc. Iva Tomić
Suradnik: Ivan Žilić
Sažetak:
Ciljevi projekta:
ETLAnow je ekonomski prognostički model koji na dnevnoj bazi ažurira sadašnje i buduće stope nezaposlenosti za svaku od država članica EU-a te prognoze automatski objavljuje online. Model se temelji na ideji da količina pojmova Google pretraživanja vezanih uz nezaposlenost, kao što su naknade za nezaposlene, može biti povezana sa stvarnom razinom nezaposlenosti. Općenito, osnovni cilj projekta bio je koristiti masovne nove skupove podataka u stvarnom vremenu, odnosno „velike podatke“, kako bi se poboljšale ekonomske prognoze.
Očekivani rezultati/ishodi:
ETLAnow koristi podatke Google pretraživanja za predviđanje stope nezaposlenosti u svim zemljama EU-a. Automatski predviđa stopu nezaposlenosti tri mjeseca unaprijed korištenjem Google Trends baze podataka i Eurostata, uz objavu rezultata na dnevnoj razini.
Aktivnosti:
Aktivnosti istraživača pri Ekonomskom institutu, Zagreb prije svega uključivale su stvaranje popisa pojmova na temelju Google pretraživanja koje su nezaposlene osobe, ili osobe koje su očekivale da će postati nezaposlene, pretraživale u Hrvatskoj. Dodatne aktivnosti uključivale su pisanje članka/izvješća o performansama sustava predviđanja u Hrvatskoj uz podršku ETLA-e.
Opis metodologije:
Model je koristio podatke o količini pojmova Google pretraživanja vezanih uz nezaposlenost u stvarnom vremenu, kao i najnovije službene podatke o stopama nezaposlenosti. Za predviđanje je korišten jednostavni sezonski autoregresijski model prvog reda, koji je uključivao relevantne Google varijable (Google Index). Osim toga, izvodila se i analiza unakrsne korelacije (cross-correlation) i Grangerovi testovi uzročnosti (Granger-causality tests).